Tetranortriterpenoids. Part XIV.¹ The Structure of Nyasin, a Limonoid from Khaya nyasica; a Correction

By Joseph D. Connolly and David A. H. Taylor,* Department of Chemistry, the University of Glasgow, Glasgow G12 800 and Department of Chemistry, University of Ibadan, Nigeria

Nyasin has been shown to be 11β-hydroxykhivorin (4) rather than an isomer of khivorin. This was confirmed by its preparation by partial hydrolysis of 11β -acetoxykhivorin (2).

NYASIN is a limonoid which was extracted in very small amount from a sample of timber of Khaya nyasica.² Further specimens of the timber yielded only khivorin (1) and 11β -acetoxykhivorin (2).³ Originally nyasin was thought to be isomeric with khivorin and it was assigned the structure (3).^{2,3} We now present evidence which proves that this was incorrect, and that nyasin is 11β hydroxykhivorin (4).[†]

Nyasin, C₃₂H₄₂O₁₁ contains a secondary hydroxygroup in addition to the three secondary acetate systems. In the mass spectrometer, this is easily lost as water, giving an apparent molecular ion at m/e 584. This, miscounted as 586, was responsible for the original error.

The carbinol proton appears in the n.m.r. spectrum as a multiplet, $\delta 4.10$ at 100 MHz, but is obscured at 60 MHz. Irradiation at this frequency causes a sharp doublet (H-9) at $\delta 2.66$ (J 4.5 Hz) to collapse to a singlet, and irradiation at $\delta 2.66$ leaves the carbinol proton signal as a quartet (J_{obs} 8.5 Hz; after D₂O exchange). These results indicate the part structure C·CH·CH(OH)·CH₂. The remainder of the spectrum strongly suggests that nyasin is a 1α , 3α , 7α -triacetate (cf. khivorin⁴). This leads to the conclusion that nyasin is 11^β-hydroxykhivorin (4).

With Jones reagent nyasin is oxidised to the ketone (5), in the n.m.r. spectrum of which H-9 appears as a sharp singlet at δ 3.87 (cf. 11-oxocedrelone, δ 4.05) ⁵ and

- ² D. A. H. Taylor, Chem. Comm., 1967, 500.
 ³ D. A. H. Taylor, J. Chem. Soc. (C), 1969, 2439.
 ⁴ J. W. Powell, J. Chem. Soc. (C), 1966, 1794.
- ⁵ D. A. H. Taylor, J. Chem. Soc. (C), 1970, 336.

[†] It has been suggested by a referee that nyasin is an artefact of isolation. We agree that this is possible, but have no evidence to enable us to decide if it is correct.

¹ Part XIII, J. D. Connolly and R. McCrindle, J. Chem. Soc. (C), 1971, 1715.

H-1 as a multiplet at $\delta 5.33$, both being deshielded by the carbonyl group at C-11. In addition, the H-15 signal shows a slight downfield shift to $\delta 3.64$.

The structure of nyasin was confirmed by reinvestigating the alkaline hydrolysis of 11β -acetoxykhivorin. Previous work ⁵ yielded the 7-deacetyl derivative (6) and H-7 δ 4.48). Under more vigorous conditions of hydrolysis we confirm that the only monodeacetyl product was (6); no nyasin was isolated.

The presence of an 11β -hydroxy-group in nyasin readily explains the striking downfield shifts of the methyl resonances observed in its n.m.r. spectrum. Our assignments of these and the increments to the corresponding 11-deoxy-compounds are given in the Table.

EXPERIMENTAL

Nyasin.—Natural nyasin crystallised from methanol as prisms, m.p. 301— 303° , $\delta 0.76$, 0.90, 1.18, 1.29, and 1.38 (tert. Me), 1.94, 1.96, and 2.06 (OAc), 3.52 (s, H-15), 4.48, 4.71, and 4.93 (each 1H, m, H-1, H-3, H-7), and 5.63 (s, H-17) (Found: C, 64.0; H, 7.2. $C_{32}H_{42}O_{11}$ requires C, 63.75; H, 7.0%).

Alkaline Hydrolysis of 11β-Acetoxykhivorin.—To 11βacetoxykhivorin (500 mg) in methanol (70 ml) was added aqueous 0·1M-sodium hydroxide (15 ml). The mixture was refluxed for 15 min, acidified with 6M-hydrochloric acid, and extracted with chloroform. The crude product was chromatographed on preparative plates to yield starting material (90 mg), nyasin (130 mg), the 1,3-dideacetyl derivative (7) (100 mg), m.p. 275—280° (from methanol), and the 7-acetate (9) (60 mg). The nyasin formed prisms, m.p. 301—303° (from methanol), and was identical in all respects with the natural material. The 7-acetate was amorphous, δ 0·83, 0·87, 1·20, and 1·28 (6H) (tert. Me), 2·06 (OAc), 2·80 (1H, d, J 4·5 Hz, H-9), 3·58 and 3·84 (each 1H, m, H-1, H-3), 4·66 (1H, m, H-11), and 5·63 (s, H-17).

Methyl group resonances in 11-oxygenated khivorin derivatives (Hz from Me₄Si at 60 MHz; solvent deuteriochloroform)

_											
Compound	4α	4β	8	10	13	Δ for	4α	4β	8	10	13
Nyasin (4)	46	54	77	83	71	11β-OH	3	-2	11	21	-5
7-Acetate (9)	50	52	77	72	77	11β-OH	0	1	12	22	0
7,11-Diacetate (7)	49	52	76	67	76	11β-OAc	1	1	11	12	-1
11-Oxokhivorin (5)	48	56	68	88	77	11-oxo	-1	0	2	26	1

a compound now recognised as the 1,3-dideacetyl derivative (7). The latter on oxidation and treatment with acid was transformed into 11β -acetoxygedunin (8).⁶ Under much milder basic conditions a mixture of unchanged starting material and mono-, di-, and trideacetyl products, separable by preparative t.l.c., was obtained. The single monodeacetyl product was identical with nyasin (4). The dideacetyl product was the 1,3-isomer already mentioned. The trideacetyl derivative was amorphous, but from its n.m.r. spectrum could be recognised as the 7-acetate (9) (H-15 & 3.52;

⁶ J. D. Connolly, R. McCrindle, K. H. Overton, and J. Feeney, *Tetrahedron*, 1966, 22, 891. Hydrolysis of 11β -acetoxykhivorin under the conditions described previously gave, as before, the 7-hydroxycompound (6) as the only monodeacetyl compound. No nyasin was detected.

Oxidation of Nyasin.—Nyasin (40 mg; from 11 β -acetoxykhivorin) in acetone (2 ml) was treated with Jones reagent (3 drops) at room temperature for 5 min. Normal work-up yielded the 11-*ketone* (5) (35 mg), m.p. 286—288° (from methanol), v_{max} (CCl₄) 1750 and 1719 cm⁻¹, δ 0.8, 0.93, 1.13, 1.28, and 1.46 (tert. Me), 1.92, 1.98, and 2.16 (OAc), 4.63 and 4.72 (each 1H, m, H-3, H-7), and 5.68 (s, H-17) (Found: C, 64.15; H, 6.8. C₃₂H₄₀O₁₁ requires C, 64.05; H, 6.7%).

[2/2175 Received, 18th September, 1972]